
Directory Opus 5 157

Appendix
ARexx

The Directory Opus 5 ARexx port name is DOPUS.x, where
x is the invocation count of the program (the first and most
often used one is DOPUS.1). Since ARexx scripts launched
from Directory Opus do not automatically inherit the
command address, you may want to use the {Qp} command
sequence in Opus functions (this is described elsewhere in
the manual).

If a command returns a value or information, the data will
generally be returned in the RESULT variable. The only
exception to this are the dopus request and dopus
getstring commands (see below). Error codes are returned
in the RC variable.

Commands

For simplicity, the Directory Opus 5 command set is
arranged in a heirarchical structure, with only three main
(or base) commands:- dopus, lister and command.

dopus

The first base command is dopus. This is a general purpose
command, and allows you to perform functions not falling
into the other categories.

ARexx

Directory Opus 5

. dopus front

This command moves the Directory Opus 5 window
(and screen) to the front of the display.

. dopus back

This command moves the Directory Opus 5 window
(and screen) to the rear of the display.

. dopus getstring <text> <length> <default> <buttons>

This command allows you to prompt the user to input a
text string. <text> is a string of text to be displayed in
the requester, and should be surrounded by quotes if it
contains spaces. <length> is the maximum length of the
string to accept. <default> is the default value of the
string; that is, the text you wish to initially appear in the
field. <buttons> are the buttons you wish the requester
to have; each button should be separated by a vertical
bar character. For example,

> dopus getstring ’"Please enter some text" 40 ""
Okay|Cancel’

This would display a requester with the string "Please
enter some text", a maximum input length of 40
characters, no default text, and buttons labelled Okay
and Cancel.

The string (if any) is returned in RESULT. The ordinal
number of the selected button is returned in the special
variable DOPUSRC. In the above example, if the user
clicked Okay DOPUSRC would contain 1, and if the
user clicked Cancel it would contain 0. This command is
the only one that uses the DOPUSRC variable
currently, but this may change in the future.

158

Directory Opus 5

Appendix

. dopus request <text> <buttons>

This command allows you to request a choice from the
user. <text> is a string of text to be displayed in the
requester. <buttons> are the buttons you wish the
requester to have; each button should be separated by a
vertical bar character. For example,

> dopus request ’"Please choose an option"
"Option 1|Option 2|Option 3"’

This would display a requester with the string "Please
choose an option", and three buttons labelled Option 1,
Option 2 and Option 3.

The ordinal number of the selected button is returned in
RC. The last button supplied (Option 3 in this case) is
designated a Cancel button, and so returns the value 0.
Therefore, the values returned by this example are 1, 2
and 0 respectively.

. dopus getfiletype <filename> [id]

This command allows you to query a file to see if it is
recognised by Directory Opus 5. <filename> is the name
of the file, including the full path. By default, if the file
is recognised the filetype description string will be
returned in RESULT. If you specify the id keyword, the
filetype ID will be returned instead. For example,

> dopus getfiletype ram:testfile.lha
--> LHA Archive
> dopus getfiletype ram:picture.jpg id
--> JPEG

159

ARexx

Directory Opus 5

lister

The next base command, lister, allows you to control listers
and entries within listers.

. lister new [<x/y/w/h>] [<path>]

This command creates a new lister. You may optionally
specify the position and size of the new lister; the
default is to open under the mouse pointer. You may
also specify a path to read when the lister opens.

For example,

> lister new
> lister new 100/50/400/300
> lister new ram:
> lister new 80/30/200/200 dh0:work
--> 121132636

If the lister opens successfully, its HANDLE is returned
in the RESULT variable. You must save the value of
this handle if you wish to do anything further with this
lister. In the above example, a handle of 121132636 was
returned. This will be used for further examples below.

. lister close <handle>

This command closes the specified lister. Any function
that is currently taking place will be aborted. <handle>
is the lister handle that was returned when you created
this lister with the lister new command.

For example,

> lister close 121132636

160

Directory Opus 5

Appendix

. lister query <handle> <item>

This command returns a particular item of information
from the specified lister. <handle> is the handle of the
lister in question. All information is returned in the
RESULT variable, unless an error occurs. <item> can be
one of the following keywords:-

path

Returns a string indicating the current path
visible in the lister. For example,

> lister query 121132636 path
--> ram:

position

Returns the current position and size of the lister.
For example,

> lister query 121132636 position
--> 80/30/200/200

busy

Returns a boolean value (0 or 1) indicating the
lister busy status. That is, if the lister is currently
busy, it will return 1, otherwise it will return 0.
For example,

> lister query 121132636 busy
--> 1

handler

Returns the name of the current custom handler
port (see below). For example,

161

ARexx

Directory Opus 5

> lister query 121132636 handler
--> lhadir_handler

visible

Returns a boolean value indicating if the lister is
currently visible. For example,

> lister query 121132636 visible
--> 1

files <separator>

Returns the names of all files in the lister. The
names are returned as one long string, separated
by spaces. You may change the separation
character by specifying it after the files keyword.
For example,

> lister query 121132636 files
--> "abc" "Disk.info" "readme" "zzz.zzz"

dirs <separator>

Returns the names of all directories in the lister.
For example,

> lister query 121132636 dirs ,
--> "Clipboards","ENV","T"

entries <separator>

Returns the names of all entries (that is, both files
and directories) in the lister. For example,

> lister query 121132636 entries
--> "Clipboards" "ENV" "T" "abc"

"Disk.info" "readme" "zzz.zzz"

162

Directory Opus 5

Appendix

If you append the STEM keyword, followed by
the name of a variable, the names of all entries
will be returned as a stem variable. The variable
name you supply must be followed by a period.
For example,

> lister query 121132636 entries stem files.

This would return the following variables :-

files.count=7
files.0=Clipboards
files.1=ENV
files.2=T
files.3=abc
etc.

firstsel

Returns the name of the first selected entry in the
lister. The entry is not deselected, so if you don’t
deselect it yourself this command will only ever
return the one name. For example,

> lister query 121132636 firstsel
--> "ENV"

selfiles <separator>

Returns the names of all selected files in the lister.
This supports the use of stem variables as
described above.

seldirs <separator>

Returns the names of all selected directories in
the lister. This supports the use of stem variables.

163

ARexx

Directory Opus 5

selentries <separator>

Returns the names of all selected entries (ie both
files and directories) in the lister. This supports
the use of stem variables.

numfiles

Returns the number of files in the lister. For
example,

> lister query 121132636 numfiles
--> 4

numdirs

Returns the number of directories in the lister.
For example,

> lister query 121132636 numdirs
--> 3

numentries

Returns the total number of entries in the lister
(files + dirs). For example,

> lister query 121132636 numentries
--> 7

numselfiles

Returns the number of selected files in the lister.

numseldirs

Returns the number of selected directories in the
lister.

164

Directory Opus 5

Appendix

numselentries

Returns the total number of selected entries in the
lister.

entry <name>

Returns information about the specified entry.
<name> is the actual name of the entry to return
information about. You can supply #xxx for the
name (where xxx is a number), to specify the
ordinal number of the desired entry. This
command can return information in two ways.
The default way is to return a string of
information in the RESULT variable. The
information returned in this case is

<name> <size> <type> <selection> <seconds>
<protect> <comment>

where <name> is the full name of the entry, <size>
is the size of the entry, <type> is the type of the
entry (<0 means a file, >0 means a directory),
<selection> indicates the selection status of the
entry (1 if the entry is selected, 0 if it is not
selected), <seconds> is the datestamp of the entry
in seconds from 1/1/78, <protect> is the
protection bits of the file (in ascii format); and
<comment> is the comment of the entry (if any).
For example,

> lister query 121132636 entry ENV
--> ENV -1 2 0 543401724 ----rwed

The second, and more elegant method, returns
information about the entry in a stem variable. To
use this second method, you must specify the
STEM keyword followed by the name of the stem
variable you wish to use. The name of this
variable must be followed by a period.

165

ARexx

Directory Opus 5166

For example,

> lister query 121132636 entry ENV stem fileinfo.

The specified stem variable will have several
fields, each containing information about the
entry in question. These fields are as follows:-

name - file name
size - file size
type - type (<0 = file, >0 = dir)
selected - 0 or 1
date - seconds since 1/1/78
protect - protection bits (long value)
datestring - datestamp in ascii form
protstring - protection bits in ascii form
comment - file comment (if any)
filetype - file type (if any)

sort

This returns a keyword indicating the current sort
method in this lister. Valid sort methods are:-

name - file name
size - file size
protect - protection bits
date - datestamp
comment - comment
filetype - file type
owner - owner
group - group
netprot - network access bits

For example,

> lister query 121132636 sort
--> name

Appendix

Directory Opus 5 167

separate

This returns a keyword indicating the current file
separation method in this lister. Valid separation
methods are:-

mix - mix files and directories
dirsfirst - directories first
filesfirst - files first

For example,

> lister query 121132636 separate
--> dirsfirst

display

This returns a string indicating the current
display items. The string will consist of the same
keywords as for sort, in the order that they
appear in the lister (if they appear at all). For
example,

> lister query 121132636 display
--> name size date protect comment

flags

This returns a string indicating any sort or
display flags that are active for the lister. These
flags are:-

reverse - sort in reverse order
noicons - filter icons
hidden - filter hidden bit

For example,

> lister query 121132636 flags
--> noicons

ARexx

Directory Opus 5168

hide

This returns the current hide filter for this lister.
For example,

> lister query 121132636 hide
--> #?.o

show

This returns the current show filter for this lister.

abort

This returns a boolean value indicating the status
of the lister’s abort flag. This query command is
only valid if the lister has a progress indicator
open (as this is the only way the user can abort a
function anyway). This will return 1 if the user
has clicked the abort gadget, 0 if she has not.

☞☞☞☞☞☞☞☞ Note that in Opus 4, querying the abort flag would also
reset it. This is not the case in Opus 5; if you wish to reset
the state of the abort flag you must use the "lister clear"
command.

For example,

> lister query 121132636 abort
--> 0

source

This command returns the handles of all source
listers currently open. Note that this does not
require a lister handle to operate.

For example,
> lister query source
--> 121132636 128765412

Appendix

Directory Opus 5 169

This command also accepts the STEM keyword,
to specify a stem variable. For example,

> lister query source stem sources.

This would return:-

sources.count=2
sources.0=121132636
sources.1=128765412

dest

This command returns the handles of all
destination listers currently open. Note that this
does not require a lister handle to operate. This
also supports the use of stem variables.

For example,

> lister query dest
--> 121963868

all

This command returns the handles of all non-
busy listers (that is, any listers that are not
performing a function at the time). Note that this
does not require a lister handle to operate. This
also supports the use of stem variables.

For example,

> lister query all
--> 121132636 121963868

ARexx

Directory Opus 5170

. lister set <handle> <item> <value>

This command sets a particular item of information in
the specified lister. <handle> is the handle of the lister in
question. <item> can be one of the following
keywords:-

path <path string>

Sets the current path string in the lister. Note that
this does NOT cause the directory to be read, it
merely changes the displayed string. To read a
new directory, use the lister read command. For
example,

> lister set 121132636 path ’dh0:work’

position <x/y/w/h>

This sets the current position and size of the lister.
If the lister is visible the window will be moved
immediately. For example,

> lister set 121132636 position
20/20/400/300

handler <port name>

Sets the custom handler port name for this lister
(see below for more information on this). For
example,

> lister set 121132636 handler
’lhadir_handler’

busy <state>

Sets the busy status for this lister. You can
specify 0 or ’off’ to turn the busy pointer off, or 1
or ’on’ to turn it on. For example,

Appendix

Directory Opus 5 171

> lister set 121132636 busy on
> lister set 121132636 busy 0

visible <state>

Sets the visible status for this lister. By default,
listers are visible when they are created. If you
set this state to 0 or off, the lister will disappear
from the display, until you make it visible again.
For example,

> lister set 121132636 visible off
> lister set 121132636 visible 1

sort <method>

Sets the sort method for this lister. The list is
resorted immediately, but the display will not be
updated until you execute a lister refresh
command. See the lister query section for the
sort method keywords available. For example,

> lister set 121132636 sort date
> lister set 121132636 sort filetype

separate <method>

Sets the separation method for this lister. The list
is rearranged immediately, but the display will
not be updated until you execute a lister refresh
command. See the lister query section for the
separation keywords recognised. For example,

> lister set 121132636 separate mix

display <items>

Sets the display items for this lister. The display
will not be updated until you execute a lister
refresh command. See the lister query section

ARexx

Directory Opus 5172

for the item keywords to use. For example,

> lister set 121132636 display name date
size protect

 flags <flags>

Sets sort/display flags for this lister. The display
is not updated unless you execute a lister refresh
command. See the lister query section for the
keywords to use. For example,

> lister set 121132636 flags reverse
noicons

hide <pattern>

Sets the hide pattern for this lister. The pattern is
applied immediately but the display is not
updated until you execute a lister refresh
command. For example,

> lister set 121132636 hide ’#?.info’

show <pattern>

Sets the show pattern for this lister. The pattern
is applied immediately but the display is not
updated until you execute a lister refresh
command. For example,

> lister set 121132636 show ’#?.c’

title <string>

Sets the title for this lister (the title displayed in
the lister title bar). The title bar display will not
be updated until you execute a lister refresh full
command (see below). The old title is returned in
RESULT. For example,

Appendix

Directory Opus 5 173

> lister set 121132636 title ’hello’
--> RESULT
> lister set 121132636 title
--> hello

 source [lock]

Makes this lister the source. If you specify the
lock keyword, it will be locked as a source. For
example,

> lister set 121132636 source lock

dest [lock]

Makes this lister the destination. If you specify
the lock keyword, it will be locked as a
destination. For example,

> lister set 121132636 dest

off

Turns this lister off (ie neither source nor
destination). For example,

> lister set 121132636 off

progress <total> <text>

This turns the progress indicator on in the
specified lister. <total> specifies the total amount
to be processed, and controls the bar graph
display. Specify a total of -1 to have no bar
graph. <text> is a text string to be displayed at the
top of the progress indicator. For example,

> lister set 121132636 progress 38
’Archiving files...’

ARexx

Directory Opus 5174

progress count <count>

This updates the bar graph display in the
progress indicator (which must have already
been turned on); <count> is the current progress
count to be indicated by the bar graph. This must
be greater than the previous count. For example,

> lister set 121132636 progress count 4

progress name <name>

This updates the filename display in the progress
indicator. The filename is displayed below the
bar graph. For example,

> lister set 121132636 progress name
’myfile.txt’

. lister clear <handle>

This command clears the contents of the specified lister.
The display will not be updated until you execute a
lister refresh command.

. lister clear <handle> <item> <value>

This command clear a particular item of information in
the specified lister. <handle> is the handle of the lister in
question; <item> can be one of the following keywords:-

flags <flags>

Clears sort/display flags for this lister. The
display is not updated unless you execute a lister
refresh command. See the lister query section
for the keywords to use. For example,

> lister clear 121132636 flags reverse

Appendix

Directory Opus 5 175

progress

This turns the progress indicator off in the
specified lister.

abort

This clears the abort flag in the specified lister.

. lister add <handle> <name> <size> <type><seconds>
<protect> <comment>

This command adds an entry to the specified lister.
<name> is the full name of the entry; <size> is the size of
the entry; <type> is the type of the entry (-1 for a file, 1
for a directory); <seconds> is the datestamp of the entry
in seconds from 1/1/78; <protect> is the protection bits
of the file (in ascii format); <comment> is the comment of
the entry (if any).

☞☞☞☞☞☞☞☞ Note that the display is not updated until you execute a
lister refresh command.

For example,

> lister add 121132636 ’"My file!"’ 12839 -1
540093905 prwed my comment

. lister remove <handle> <name>

This command removes an entry from the specified
lister. <name> is either the name of the entry, or #xxx
(where xxx is a number) to specify the ordinal number
of the entry. The display is not updated until you
execute a lister refresh command. For example,

> lister remove 121132636 #5

ARexx

Directory Opus 5176

. lister select <handle> <name> <state>

This command changes the selection status of an entry
in the specified lister. <name> is either the name of the
entry, or #xxx (where xxx is a number) to specify the
ordinal number of the entry. <state> is the desired
selection status (0 or ’off’ for off, 1 or ’on’ for on). If
<state> is not given then the state of the entry is toggled.
The display is not refreshed until you execute a lister
refresh command. The previous selection state of the
entry is returned in RESULT. For example,

> lister select 121132636 ENV on
--> off

. lister refresh <handle> [full]

This command refreshes the display of the specified
lister. Unlike Opus 4, none of the lister modifying
commands above will actually refresh or update the
lister display; hence, you must use this command after
making any changes (changing sort method, adding
files, etc) to have the changes display. The optional full
keyword causes the lister title and status display to be
refreshed as well. For example,

> lister refresh 121132636 full

. lister empty <handle>

This command will display an empty cache in the
specified lister (unlike lister clear which clears the
contents of the current cache). If no empty caches are
available (and a new one can not be created), the
existing cache will be cleared.

Appendix

Directory Opus 5 177

. lister read <handle> <path> [force]

This command will read the given path into the
specified lister. By default a new cache is used to read
the directory; if the force keyword is specified, the
current cache will be cleared and the directory will be
read into that. The old path is returned in RESULT.
For example,

> lister read 121132636 ’dh0:test’
--> RamDisk:

. lister copy <handle> <destination>

This command copies the contents of one lister to
another lister. Unlike most commands, the display of
the destination lister is refreshed immediately. For
example,

> lister copy 121132636 121963868

. lister wait <handle>

This command causes the rexx script to wait for the
specified lister to finish whatever it is doing. Because
Opus 5 multitasks, all rexx commands (like lister read,
or lister new) will return immediately, even if the lister
has not completed its task. This command will force the
script to wait until the lister goes non-busy. If the lister
is not in a busy state when this command is called, the
program will wait for up to two seconds for it to go
busy, otherwise this call is aborted. It would be silly to
do lister set busy 1 and then lister wait. For example,

> lister read 121132636 ’c:’
> lister wait 121132636

ARexx

Directory Opus 5178

command

The third base command is command. This allows you to
call the internal commands of Directory Opus 5 from an
ARexx script. The commands execute exactly as if they had
been run from a custom button or menu; that is, they
operate on the current source and destination listers. You
can also specify command parameters as normal. Some
examples of the command command are:-

> command all
> command copy
> command read s:startup-sequence
> command makedir name=MyDir noicon

Error Codes

Lister handles are the actual address in memory of the lister
structure. Opus 5 will reject any non-valid handles with an
RC of 10. All commands that return data return it in
RESULT (with the exception of dopus request and dopus
getstring) or a specified stem variable; if an error occurs,
the error code is returned in RC. An RC of 0 generally
indicates that everything is ok. Error codes are:-

1 RXERR_FILE_REJECTED

The file you tried to add was rejected by the current
lister filters.

☞☞☞☞☞☞☞☞ Note that this is not an error, just a warning. The file is
still added, it will just not be visible until the filters are
changed.

5 RXERR_INVALID_QUERY
RXERR_INVALID_SET

The query/set item you specified was invalid.

Appendix

Directory Opus 5 179

6 RXERR_INVALID_NAME
RXERR_INVALID_KEYWORD

The file name, or keyword you specified was invalid.

10 RXERR_INVALID_HANDLE

The lister handle you gave was invalid.

15 RXERR_NO_MEMORY

There wasn’t enough memory to do what you wanted.

20 RXERR_NO_LISTER

A lister failed to open (usually because of low-memory).

Custom Handlers

The custom handler system allows you to specify the name
of an external message port. This port will be sent
messages whenever certain things happen to entries in the
lister(s) you are interested in.

When you specify a custom handler for a lister, you give
the name of a public message port.

☞☞☞☞☞☞☞☞ Note that custom handlers are specific only to the cache
that is visible in the lister at the time the handler name is
set. The same handler port may be used set for multiple
caches, and indeed for multiple listers. Note also that
message port names are case-sensitive.

Whenever something interesting happens to a lister that has
an active custom handler, the handler will be sent an ARexx
message. The handler can be implemented either as a rexx
program or as a C program (in which case it must interpret
the rexx message itself). Unlike Opus 4, messages sent to

ARexx

Directory Opus 5180

handlers do not cause Directory Opus 5 to "hang" until they
are replied (although you should try to reply to any
messages as soon as possible).

The rexx message identifies the type of event, the lister the
event happened to, and other pertinent data. Currently, the
only events that you will be notified of are :-

doubleclick

This is a double-click event, and indicates that an item
in the lister has been double-clicked on by the user. The
message arguments are:-

Arg0 - "doubleclick"(event type)
Arg1 - <handle>(lister handle)
Arg2 - <name>(entry name)
Arg3 - <userdata>(not used yet)

drop

This is a drag’n’drop event, and indicates that one or
more entries have been dropped into a lister. The
message arguments are:-

Arg0 - "drop"(event type)
Arg1 - <handle>(lister handle)
Arg2 - <names>(file names)
Arg3 - <source handle>(source lister handle)

The filenames are separated by spaces (if there is more
than one). If the files originated from another Opus 5
lister, Arg3 gives the handle of that lister. In this case,
only the filenames (and not their paths) are supplied in
Arg2 (you can get the source path using lister query). If
Arg3 is null then the drop most likely originated from
Workbench, and the names in Arg2 include the full
paths.

Directory Opus 5 181

dropfrom

This is exactly the same as the drop event, except that it
indicates a drop from a lister rather than a drop to one.

active

This event indicates that a cache with a custom handler
attached has just become visible. The message
arguments are:-

Arg0 - "active"(event type)
Arg1 - <handle>(lister handle)
Arg2 - <title>(cache title)
Arg3 - undefined
Arg4 - <path>(path of the lister)

Arg2 will contain the custom title of the cache that
became active, if it has been set with lister set title. If no
custom title has been defined, the path string of the
cache is returned instead (ie in this case Arg2 will be the
same as Arg4).

inactive

This event indicates that the cache this custom handler
is attached to is no longer active (visible in the lister).
The message arguments are the same as for "active"
above, except for a different event type in Arg0. This
message is caused by the cache in the lister being
changed (either by the user or under rexx control), or
even by the lister being closed. Note that you may
receive an "active" message for another cache with a
custom handler, or even for the same cache,
immediately after receiving an "inactive" message.

Because of the multi-tasking nature of Opus 5, information
custom handlers receive can not be 100% relied on. For
example, you may receive an "active" message, but the

Appendix

Directory Opus 5182

cache that caused it may have immediately gone "inactive"
again. You should therefore check your port is clear of all
messages before processing any that have come in, and you
should also use the lister query command to make sure that
things are how you expect them. Also note that listers
(unless you have turned busy on) can be closed by the user
at any time. To check that a lister is still open, use the lister
query path command (or any other query command). If the
lister no longer exists, RC will contain the error code
XERR_INVALID_HANDLE (10). Be aware though that
while these possibilities exist, generally they will not cause
a problem.. For the most part it will only be if the user is
"playing around" that weird situations will occur.

ARexx

